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Abstract. In this paper, we introduce and study a generalized Yosida ap-
proximation operator associated to H(·, ·)-co-accretive operator and dis-
cuss some of its properties. Using the concept of graph convergence and
resolvent operator, we establish the convergence for generalized Yosida
approximation operator. Also, we show an equivalence between graph
convergence for H(·, ·)-co-accretive operator and generalized Yosida ap-
proximation operator. Furthermore, we suggest an iterative algorithm
to solve a Yosida inclusion problem under some mild conditions in q-
uniformly smooth Banach space and discuss the convergence and unique-
ness of the solution.
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1. Introduction

The theory of variational inequalities (variational inclusions) is one of the
most important and dignified areas in nonlinear analysis and optimization be-
cause number of problems from science, engineering, social sciences, manage-
ment, etc., can be modeled in the form of a variational inequality or variational
inclusion; see, for example, [7, 8, 10, 12, 13, 14, 19, 20] and the references
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therein. This theory has been generalized by many researchers in variant di-
rections and many efficient methods have been developed in the last three
decades to solve variational inequalities or variational inclusions; see, for ex-
ample, [1, 2, 5, 6, 8, 10, 11, 14, 15, 16, 24, 25, 29]. The notion of monotone
operators independently introduced by Zarantonello [28] and Minty [23]. The
monotone operators are very interesting to study and researched by number of
authors as they have firm connection with the following first order evolution
equation:

dx

dt
= −M(x), x(0) = x0,

which is the model of many problems of physical applications.
It is well known that two quite useful single-valued Lipschiz continuous oper-

ators can be associated with a monotone operators, namely resolvent operator
and Yosida approximation operator. The Yosida approximation operators are
useful to approximate the solutions of variational inclusion problems using non-
expansive resolvent operators. Recently, many authors implemented Yosida
approximation operators to study some of variational inclusion problems using
different approaches; see, for example, [9, 17, 18, 21, 26].

In this paper, motivated by the research discussed above, we introduced
a generalized Yosida approximation operator associated to H(·, ·)-co-accretive
operator and discuss some of its properties. We discuss the convergence of
generalized Yosida approximation operator and establish its equivalence with
graph convergence for H(·, ·)-co-accretive operator in q-uniformly smooth Ba-
nach space. Further, we suggest an iterative algorithm and investigate the
convergence of iterative algorithm. Also, we solve a Yosida inclusion problem
as an application and discuss the existence and uniqueness of the solution. Our
results refine and generalize some known results in literature.

2. Preliminaries

Let E be a real Banach space with its norm ∥ · ∥, E∗ be the topological dual
of E and d be the metric induced by the norm ∥ · ∥. Let ⟨·, ·⟩ be the dual pair
between E and E∗ and CB(E) (respectively 2E) be the family of all nonempty
closed and bounded subsets (respectively, all non empty subsets) of E.

The generalized duality mapping Jq : E → 2E
∗ is defined by

Jq(x) =
{
f∗ ∈ E∗ : ⟨x, f∗⟩ = ∥x∥q, ∥f∗∥ = ∥x∥q−1

}
,∀x ∈ E,

where q > 1 is a constant. In particular, J2 is the usual normalized duality
mapping. It is well known that Jq(x) = ∥x∥q−1J2(x),∀x( ̸= 0) ∈ E. In the
sequel, we assume that E is a real Banach space such that Jq is single-valued.
If E is a real Hilbert space, then J2 becomes the identity mapping on E.
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The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined
by

ρE(t) = sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : ∥x∥ ≤ 1, ∥y∥ ≤ t

}
.

A Banach space E is called uniformly smooth, if

lim
t→0

ρE(t)

t
= 0;

E is called q-uniformly smooth, if there exists a constant c > 0 such that

ρE(t) ≤ ctq, q > 1.

Note that Jq is single-valued, if E is uniformly smooth. Xu [27] proved the
following important inequality in q-uniformly smooth Banach spaces.

Lemma 2.1. Let q > 1 be a real number and let E be a real uniformly smooth
Banach space. Then E is q-uniformly smooth if and only if there exists a
constant cq > 0 such that for every x, y ∈ E,

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ cq∥y∥q.

Definition 2.2. A mapping A : E → E is said to be
(i) accretive, if

⟨Ax−Ay, Jq(x− y)⟩ ≥ 0, ∀x, y ∈ E;

(ii) strictly accretive, if

⟨Ax−Ay, Jq(x− y)⟩ > 0, ∀x, y ∈ E,

and the equality holds if and only if x = y;

(iii) δ-strongly accretive, if there exists a constant δ > 0 such that

⟨Ax−Ay, Jq(x− y)⟩ ≥ δ∥x− y∥q, ∀x, y ∈ E;

(iv) β-relaxed accretive, if there exists a constant β > 0 such that

⟨Ax−Ay, Jq(x− y)⟩ ≥ (−β)∥x− y∥q, ∀x, y ∈ E;

(v) µ-cocoercive, if there exists a constant µ > 0 such that

⟨Ax−Ay, Jq(x− y)⟩ ≥ µ∥Ax−Ay∥q, ∀x, y ∈ E;

(vi) γ-relaxed cocoercive, if there exists a constant γ > 0 such that

⟨Ax−Ay, Jq(x− y)⟩ ≥ (−γ)∥Ax−Ay∥q, ∀x, y ∈ E;

(vii) σ-Lipschitz continuous, if there exists a constant σ > 0 such that

∥Ax−Ay∥ ≤ σ∥x− y∥, ∀x, y ∈ E;

(viii) η-expansive, if there exists a constant η > 0 such that

∥Ax−Ay∥ ≥ η∥x− y∥, ∀x, y ∈ E;

if η = 1, then it is expansive.
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Definition 2.3. Let H : E×E → E and A,B : E → E be three single-valued
mappings. Then

(i) H(A, ·) is said to be µ1-cocoercive with respect to A, if there exists a
constant µ1 > 0 such that
⟨H(Ax, u)−H(Ay, u), Jq(x− y)⟩ ≥ µ1∥Ax−Ay∥q, ∀x, y, u ∈ E;

(ii) H(·, B) is said to be γ1-relaxed cocoercive with respect to B, if there
exists a constant γ1 > 0 such that
⟨H(u,Bx)−H(u,By), Jq(x− y)⟩ ≥ (−γ1)∥Bx−By∥q, ∀x, y, u ∈ E;

(iii) H(A,B) is said to be symmetric cocoercive with respect to A and B, if
H(A, ·) is cocoercive with respect to A and H(·, B) is relaxed cocoercive
with respect to B;

(iv) H(A, ·) is said to be α1-strongly accretive with respect to A, if there
exists a constant α1 > 0 such that
⟨H(Ax, u)−H(Ay, u), Jq(x− y)⟩ ≥ α1∥x− y∥q, ∀x, y, u ∈ E;

(v) H(·, B) is said to be β1-relaxed accretive with respect to B, if there
exists a constant β1 > 0 such that
⟨H(u,Bx)−H(u,By), Jq(x− y)⟩ ≥ (−β1)∥x− y∥q, ∀x, y, u ∈ E;

(vi) H(A,B) is said to be symmetric accretive with respect to A and B, if
H(A, ·) is strongly accretive with respect to A and H(·, B) is relaxed
accretive with respect to B;

(vii) H(A, ·) is said to be ξ1-Lipschitz continuous with respect to A, if there
exists a constant ξ1 > 0 such that
∥H(Ax, u)−H(Ay, u)∥ ≤ ξ1∥x− y∥, ∀x, y, u ∈ E;

(viii) H(·, B) is said to be ξ2-Lipschitz continuous with respect to B, if there
exists a constant ξ2 > 0 such that
∥H(u,Bx)−H(u,By)∥ ≤ ξ2∥x− y∥, ∀x, y, u ∈ E.

Definition 2.4. Let f, g : E → E be two single-valued mappings and M :

E × E → 2E be a multi-valued mapping. Then
(i) M(f, ·) is said to be α-strongly accretive with respect to f , if there

exists a constant α > 0 such that
⟨u− v, Jq(x− y)⟩ ≥ α∥x− y∥q, ∀x, y, w ∈ E and ∀u ∈ M(f(x), w),

v ∈ M(f(y), w);

(ii) M(·, g) is said to be β-relaxed accretive with respect to g, if there exists
a constant β > 0 such that
⟨u−v, Jq(x−y)⟩ ≥ (−β)∥x−y∥q, ∀x, y, w ∈ E and ∀u ∈ M(w, g(x)),

v ∈ M(w, g(y));

(iii) M(f, g) is said to be symmetric accretive with respect to f and g, if
M(f, ·) is strongly accretive with respect to f and M(·, g) is relaxed
accretive with respect to g.

Definition 2.5. Let A,B, f, g : E → E and H : E × E → E be the single-
valued mappings. Let M : E × E → 2E be a multi-valued mapping. The
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mapping M is said to be H(·, ·)-co-accretive with respect to A,B, f and g, if
H(A,B) is symmetric cocoercive with respect to A and B, M(f, g) is symmetric
accretive with respect to f and g and (H(A,B)+λM(f, g))(E) = E, for every
λ > 0.

Theorem 2.6. [4] Let A,B, f, g : E → E and H : E × E → E be the single-
valued mappings. Let M : E×E → 2E be an H(·, ·)-co-accretive mapping with
respect to A,B, f and g. Let A be η-expansive and B be σ-Lipschitz continuous
such that α > β, µ > γ and η > σ. Then the mapping [H(A,B) + λM(f, g)]−1

is single-valued, for all λ > 0.

Definition 2.7. [4] Let A,B, f, g : E → E and H : E ×E → E be the single-
valued mappings. Let M : E×E → 2E be an H(·, ·)-co-accretive mapping with
respect to A,B, f and g. The resolvent operator R

H(·,·)
λ,M(·,·) : E → E is defined

by
R

H(·,·)
λ,M(·,·)(u) = [H(A,B) + λM(f, g)]−1(u), ∀u ∈ E, λ > 0. (2.1)

Lemma 2.8. Let A,B, f, g : E → E and H : E × E → E be the single-valued
mappings. Let M : E×E → 2E be an H(·, ·)-co-accretive mapping with respect
to A,B, f and g. Then the resolvent operator R

H(·,·)
λ,M(·,·) defined in (2.1) is

θ-Lipschitz continuous, where

θ =
1

λ(α− β) + (µηq − γσq)
.

3. Convergence of Generalized Yosida Approximation Operator

In this section, we define the generalized Yosida approximation operator
by using the concept of resolvent operator and discuss its convergence.

Definition 3.1. The generalized Yosida approximation operator J
H(·,·)
λ,M(·,·) :

E → E is defined as

J
H(·,·)
λ,M(·,·)(u) =

1

λ

[
I −R

H(·,·)
λ,M(·,·)

]
(u), ∀u ∈ E, λ > 0, (3.1)

where, I is the identity mapping on E.

Lemma 3.2. Let A,B, f, g : E → E and H : E × E → E be the single-valued
mappings. Suppose M : E × E → 2E be an H(·, ·)-co-accretive mapping with
respect to A,B, f and g. Let A be η-expansive and B be σ-Lipschitz continuous
such that α > β, µ > γ and η > σ. Then the generalized Yosida approximation
operator J

H(·,·)
λ,M(·,·) defined in (3.1) is

(i) m1-Lipschitz continuous,
(ii) m2-strongly monotone,

where, m1 =
1

λ
(1 + θ),m2 =

1

λ
(1− θ) and θ =

1

λ(α− β) + (µηq − γσq)
.
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Proof. (i). Let u, v be any given points in E. It follows from the definition of
generalized Yosida approximation operator and Lipschitz continuity of resol-
vent operator that

∥JH(·,·)
λ,M(·,·)(u)− J

H(·,·)
λ,M(·,·)(v)∥ =

1

λ
∥[I(u)−R

H(·,·)
λ,M(·,·)(u)]− [I(v)−R

H(·,·)
λ,M(·,·)(v)]∥

≤ 1

λ
[∥u− v∥+ ∥RH(·,·)

λ,M(·,·)(u)−R
H(·,·)
λ,M(·,·)(v)∥]

≤ 1

λ
[∥u− v∥+ θ∥u− v∥]

=
1

λ
(1 + θ)∥u− v∥.

That is,
∥JH(·,·)

λ,M(·,·)(u)− J
H(·,·)
λ,M(·,·)(v)∥ ≤ m1∥u− v∥,

where, m1 = 1
λ (1 + θ) and θ =

1

λ(α− β) + (µηq − γσq)
.

(ii) Let u, v be any given points in E, then again using the definition of gener-
alized Yosida approximation operator, we get

⟨JH(·,·)
λ,M(·,·)(u)− J

H(·,·)
λ,M(·,·)(v), Jq(u− v)⟩ = 1

λ
⟨(I(u)−R

H(·,·)
λ,M(·,·)(u))

− (I(v)−R
H(·,·)
λ,M(·,·)(v)), Jq(u− v)⟩

=
1

λ
[⟨u− v, Jq(u− v)⟩ − ⟨RH(·,·)

λ,M(·,·)(u)

−R
H(·,·)
λ,M(·,·)(v), Jq(u− v)⟩]

≥ 1

λ
[∥u− v∥q − ∥RH(·,·)

λ,M(·,·)(u)−R
H(·,·)
λ,M(·,·)(v)∥∥u− v∥q−1].

Now using the Lipschitz continuity of resolvent operator, we have

⟨JH(·,·)
λ,M(·,·)(u)− J

H(·,·)
λ,M(·,·)(v), Jq(u− v)⟩ ≥ 1

λ
[∥u− v∥q − θ∥u− v∥q]

=
1

λ
(1− θ)∥u− v∥q.

That is,
⟨JH(·,·)

λ,M(·,·)(u)− J
H(·,·)
λ,M(·,·)(v), Jq(u− v)⟩ ≥ m2∥u− v∥q,

where, m2 = 1
λ (1 − θ) and θ =

1

λ(α− β) + (µηq − γσq)
. This completes the

proof. □

Definition 3.3. [4] Let A,B, f, g : E → E and H : E ×E → E be the single-
valued mappings. Let Mn,M : E × E → 2E be H(·, ·)-co-accretive mappings,
for n = 0, 1, 2, · · · . The sequence {Mn} is said to be graph convergence to M ,
denoted by MnG−→M , if for every ((f(x), g(x)), z) ∈ graph(M), there exists a
sequence ((f(xn), g(xn)), zn) ∈ graph(Mn) such that

f(xn) → f(x), g(xn) → g(x) and zn → z as n → ∞.
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Theorem 3.4. [4] Let A,B, f, g : E → E be the single-valued mappings and
Mn,M : E × E → 2E be H(·, ·)-co-accretive mappings with respect to A,B, f

and g. Let H : E × E → E be a single-valued mapping such that
(i) H(A,B) is ξ1-Lipschitz continuous with respect to A and ξ2-Lipschitz

continuous with respect to B;
(ii) f is a continuous τ -expansive mapping.

Then MnG−→M if and only if

R
H(·,·)
λ,Mn(·,·)(u) → R

H(·,·)
λ,M(·,·)(u),∀u ∈ E, λ > 0,

where,

R
H(·,·)
λ,Mn(·,·)(u) = [H(A,B)+λMn(f, g)]

−1(u) and R
H(·,·)
λ,M(·,·)(u) = [H(A,B)+λM(f, g)]−1(u).

Next, we prove the convergence of generalized Yosida approximation opera-
tor by using the concept of graph convergence for H(·, ·)-co-accretive operator.

Theorem 3.5. Let A,B, f, g : E → E be the single-valued mappings and
Mn,M : E × E → 2E be H(·, ·)-co-accretive mappings with respect to A,B, f

and g. Let H : E×E → E be a single-valued mapping such that the conditions
(i) and (ii) of the Theorem 3.4 hold. Then MnG−→M if and only if

J
H(·,·)
λ,Mn(·,·)(x) → J

H(·,·)
λ,M(·,·)(x),∀x ∈ E, λ > 0,

where,

J
H(·,·)
λ,Mn(·,·)(x) =

1

λ
[I −R

H(·,·)
λ,Mn(·,·)](x), J

H(·,·)
λ,M(·,·)(x) =

1

λ
[I −R

H(·,·)
λ,M(·,·)](x),

and R
H(·,·)
λ,Mn(·,·), R

H(·,·)
λ,M(·,·) are same as defined in Theorem 3.4.

Proof. Suppose that MnG−→M , then for any given x ∈ E, let

zn = J
H(·,·)
λ,Mn(·,·)(x) and z = J

H(·,·)
λ,M(·,·)(x).

Then z = J
H(·,·)
λ,M(·,·)(x) =

1

λ
[I −R

H(·,·)
λ,M(·,·)](x), thus

x− λz = R
H(·,·)
λ,M(·,·)(x) = [H(A,B) + λM(f, g)]−1(x),

which implies that

H(A,B)(x− λz) + λM(f, g)(x− λz) = x

i.e.,
1

λ
[x−H(A,B)(x− λz)] ∈ M(f(x− λz), g(x− λz)).

Thus, we have

((f(x− λz), g(x− λz)),
1

λ
(x−H(A(x− λz), B(x− λz)))) ∈ graph(M).
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Then by the definition of graph convergence, there exists a sequence {(f(z′n), g(z′n)), y′n} ∈
graph(Mn) such that

f(z′n) → f(x−λz), g(z′n) → g(x−λz) and y′n → 1

λ
(x−H(A(x−λz), B(x−λz))) as n → ∞.

(3.2)
Since y′n ∈ Mn(f(z

′
n), g(z

′
n)), we have

H(A(z′n), B(z′n)) + λy′n ∈ [H(A,B) + λMn(f, g)](z
′
n)

and thus,

z′n = R
H(·,·)
λ,Mn(·,·)[H(A(z′n), B(z′n)) + λy′n]

= (I − λJ
H(·,·)
λ,Mn(·,·))[H(A(z′n), B(z′n)) + λy′n],

which implies that

1

λ
z′n =

1

λ
H(A(z′n), B(z′n)) + y′n − J

H(·,·)
λ,Mn(·,·)[H(A(z′n), B(z′n)) + λy′n].

Now,

∥zn − z∥ = ∥JH(·,·)
λ,Mn(·,·)(x)− z∥

= ∥JH(·,·)
λ,Mn(·,·)(x) +

1

λ
z′n − 1

λ
z′n − z∥

= ∥JH(·,·)
λ,Mn(·,·)(x) +

1

λ
(H(A(z′n), B(z′n))) + y′n

− J
H(·,·)
λ,Mn(·,·)[H(A(z′n), B(z′n)) + λy′n]−

1

λ
z′n − z∥

≤ ∥JH(·,·)
λ,Mn(·,·)(x)− J

H(·,·)
λ,Mn(·,·)[H(A(z′n), B(z′n)) + λy′n]∥

+ ∥ 1
λ
H(A(z′n), B(z′n)) + y′n − 1

λ
z′n − z∥.

Using the Lipschitz continuity of generalized Yosida approximation operator,
we get

∥zn − z∥ ≤ m1∥x−H(A(z′n), B(z′n))− λy′n∥+ ∥ 1
λH(A(z′n), B(z′n)) + y′n − 1

λx∥
+∥ 1

λz
′
n − 1

λx+ z∥
= (m1 +

1
λ )∥x−H(A(z′n), B(z′n))− λy′n∥+ 1

λ∥z
′
n − x+ λz∥

= (m1 +
1
λ )∥x−H(A(z′n), B(z′n)) +H(A,B)(x− λz)

−H(A,B)(x− λz)− λy′n∥+ 1
λ∥z

′
n − x+ λz∥

≤ (m1 +
1
λ )∥x−H(A,B)(x− λz)− λy′n∥+ (m1 +

1
λ )∥H(A,B)(x− λz)

−H(A(z′n), B(z′n))∥+ 1
λ∥z

′
n − x+ λz∥.

(3.3)
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Since H is ξ1-Lipschitz continuous with respect to A and ξ2-Lipschitz contin-
uous with respect to B, we have

∥H(A,B)(x− λz) −H(A(z′n), B(z′n))∥
= ∥H(A(x− λz), B(x− λz))−H(A(z′n), B(z′n))∥
= ∥H(A(x− λz), B(x− λz))−H(A(x− λz), B(z′n))∥
+∥H(A(x− λz), B(z′n))−H(A(z′n), B(z′n))∥
≤ (ξ1 + ξ2)∥x− λz − z′n∥.

(3.4)
Thus, it follows from (3.3) and (3.4) that

∥zn − z∥ ≤ (m1 +
1
λ )∥x−H(A(x− λz), B(x− λz))− λy′n∥

+ [(m1 +
1
λ )(ξ1 + ξ2) +

1
λ ]∥x− λz − z′n∥.

(3.5)

Since f is τ -expansive, we have

∥f(z′n)− f(x− λz)∥ ≥ τ∥z′n − (x− λz)∥ ≥ 0. (3.6)

Since f(z′n) → f(x−λz) as n → ∞. By (3.6), we have z′n → x−λz as n → ∞.
Also from (3.2), we have y′n → 1

λ (x − H(A(x − λz), B(x − λz))) as n → ∞.

Thus, it follows from (3.5) that

∥zn − z∥ → 0 as n → ∞,

which implies that
J
H(·,·)
λ,Mn(·,·)(x) → J

H(·,·)
λ,M(·,·)(x).

Conversely, suppose that

J
H(·,·)
λ,Mn(·,·)(x) → J

H(·,·)
λ,M(·,·)(x), ∀x ∈ E, λ > 0.

For any ((f(x), g(x)), y) ∈ graph(M), we have

y ∈ M(f(x), g(x)),

thus,
H(A(x), B(x)) + λy ∈ [H(A,B) + λM(f, g)](x)

and so

x = R
H(·,·)
λ,M(·,·)[H(A(x), B(x)) + λy] = [I − λJ

H(·,·)
λ,M(·,·)][H(A(x), B(x)) + λy].

Let xn = [I − λJ
H(·,·)
λ,Mn(·,·)][H(A(x), B(x)) + λy], then

1

λ
[H(A(x), B(x))−H(A(xn), B(xn)) + λy] ∈ Mn(f(xn), g(xn)).

Let y
′

n =
1

λ
[H(A(x), B(x))−H(A(xn), B(xn)) + λy].

Now,

∥y′

n − y∥ = ∥ 1
λ [H(A(x), B(x))−H(A(xn), B(xn)) + λy]− y∥

= 1
λ∥H(A(x), B(x))−H(A(xn), B(xn))∥.
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Then by using the same argument as in (3.4), we get

∥y
′

n − y∥ ≤ (ξ1 + ξ2)

λ
∥xn − x∥. (3.7)

Also,

∥xn − x∥ = ∥[I − λJ
H(·,·)
λ,Mn(·,·)][H(A(x), B(x)) + λy]

− [I − λJ
H(·,·)
λ,M(·,·)][H(A(x), B(x)) + λy]∥

= λ∥[JH(·,·)
λ,Mn(·,·) − J

H(·,·)
λ,M(·,·)][H(A(x), B(x)) + λy]∥.

Since J
H(·,·)
λ,Mn(·,·) → J

H(·,·)
λ,M(·,·), we have ∥xn − x∥ → 0 as n → ∞. Thus from

(3.7), we have ∥y′

n − y∥ → 0 as n → ∞. Hence by the continuity of mapping
f , MnG−→M . This completes the proof. □

Remark 3.6. The convergence of the resolvent operator R
H(·,·)
λ,Mn(·,·) → R

H(·,·)
λ,M(·,·)

and the convergence of generalized Yosida approximation operator JH(·,·)
λ,Mn(·,·) →

J
H(·,·)
λ,M(·,·) are equivalent, if and only if MnG−→M .

4. A Yosida Inclusion Problem and Existence Result

Let E be a q-uniformly smooth Banach space with norm ∥.∥. Let A,B, f, g :

E → E;H : E × E → E be the single-valued mappings and M : E × E → 2E

be an H(·, ·)-co-accretive mapping with respect to A,B, f and g. We consider
the following Yosida inclusion problem (in short: YIP):

Find x ∈ E such that

0 ∈ J
H(·,·)
λ,M(·,·)(x) +M(f(x), g(x)), (4.1)

where J
H(·,·)
λ,M(·,·) is generalized Yosida approximation operator.

Remark 4.1. For suitable choices of the mappings involved in the formulation of
YIP (4.1), one can obtain many problems existing in literature; see, [3, 4, 22].

Lemma 4.2. Let A,B, f, g : E → E;H : E × E → E be the single-valued
mappings and M : E ×E → 2E be an H(·, ·)-co-accretive mapping with respect
to A,B, f and g. Then x ∈ E is a solution of YIP (4.1), if and only if x

satisfies the following equation:

x = R
H(·,·)
λ,M(·,·)[H(A(x), B(x))− λJ

H(·,·)
λ,M(·,·)(x)]. (4.2)

Proof. The proof of the lemma follows directly from the definition of resolvent
operator R

H(·,·)
λ,M(·,·).

Next, we suggest the following iterative algorithm for finding an approximate
solution for YIP (4.1).
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Algorithm 4.3. For any x ∈ E, compute the sequence {xn} ⊂ E by the
following iterative scheme:

xn+1 = R
H(·,·)
λ,M(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,M(·,·)(xn)], (4.3)

where n = 0, 1, 2, · · · ;λ > 0 is a constant.

Theorem 4.4. Let E be a q-uniformly smooth Banach space with norm ∥.∥ and
A,B, f, g : E → E be the single-valued mappings such that A is η-expansive and
B is σ-Lipschitz continuous. Let H : E × E → E be a symmetric cocoercive
mapping with respect to A and B with constants µ and γ respectively, ξ1-
Lipschitz continuous with respect to A and ξ2-Lipschitz continuous with respect
to B. Let M : E × E → 2E be an H(·, ·)-co-accretive mapping with respect to
A,B, f and g. Suppose that there exists a constant λ > 0 satisfying

0 < θ
[

q

√
1− 2q(µηq − γσq) + cq(ξ1 + ξ2)q +

q

√
1− 2λqm1 + cqλqmq

2

]
< 1,

(4.4)
where, θ =

1

λ(α− β) + (µηq − γσq)
,m1 =

1

λ
(1 + θ) , m2 =

1

λ
(1 − θ), α >

β, µ > γ, η > σ.

Then YIP (4.1) has a unique solution.

Proof. We define a mapping T : E → E by

T (x) = R
H(·,·)
λ,M(·,·)[H(A(x), B(x))− λJ

H(·,·)
λ,M(·,·)(x)], ∀x ∈ E, λ > 0. (4.5)

For any x, y ∈ E, using (4.5) and Lipschitz continuity of RH(·,·)
λ,(·,·), we have

∥T (x)− T (y)∥ = ∥RH(·,·)
λ,M(·,·)[H(A(x), B(x))− λJ

H(·,·)
λ,M(·,·)(x)]

−R
H(·,·)
λ,M(·,·)[H(A(y), B(y))− λJ

H(·,·)
λ,M(·,·)(y)]∥

≤ θ∥[H(A(x), B(x))− λJ
H(·,·)
λ,M(·,·)(x)]

−[H(A(y), B(y))− λJ
H(·,·)
λ,M(·,·)(y)]∥

≤ θ∥H(A(x), B(x))−H(A(y), B(y))− (x− y)∥
+θ∥(x− y)− λ(J

H(·,·)
λ,M(·,·)(x)− J

H(·,·)
λ,M(·,·)(y))∥.

(4.6)

Since H is symmetric cocoercive with respect to A and B with constants µ

and γ, respectively, ξ1-Lipschitz continuous with respect to A and ξ2-Lipschitz
continuous with respect to B, then using Lemma 2.1, we have

∥H(A(x), B(x))−H(A(y), B(y))− (x− y)∥q

≤ ∥x− y∥q − q⟨H(A(x), B(x))−H(A(y), B(y)),

Jq(x− y)⟩+ cq∥H(A(x), B(x))−H(A(y), B(y))∥q

≤ ∥x− y∥q − q(µ∥A(x)−A(y)∥q

− γ∥B(x)−B(y)∥q) + cq(ξ1 + ξ2)
q∥x− y∥q.

(4.7)
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Since A is η-expansive and B is σ-Lipschitz continuous, we have

∥H(A(x), B(x))−H(A(y), B(y))− (x− y)∥q

≤ [1− q(µηq − γσq) + cq(ξ1 + ξ2)
q]∥x− y∥q,

which implies that

∥H(A(x), B(x))−H(A(y), B(y))− (x− y)∥

≤ q

√
1− q(µηq − γσq) + cq(ξ1 + ξ2)q∥x− y∥.

(4.8)

Since J
H(·,·)
λ,M(·,·) is m1-Lipschitz continuious and m2-strongly monotone, then we

have

∥(x− y)− λ(J
H(·,·)
λ,M(·,·)(x)− J

H(·,·)
λ,M(·,·)(y))∥

q

≤ ∥x− y∥q − λq⟨JH(·,·)
λ,M(·,·)(x)− J

H(·,·)
λ,M(·,·)(y), Jq(x− y)⟩

+ cqλ
q∥JH(·,·)

λ,M(·,·)(x)− J
H(·,·)
λ,M(·,·)(y)∥

q

≤ (1− λqm1 + cqλ
qmq

2)∥x− y∥q,

which implies that

∥(x−y)−λ(J
H(·,·)
λ,M(·,·)(x)−J

H(·,·)
λ,M(·,·)(y))∥ ≤ q

√
1− λqm1 + cqλqmq

2∥x−y∥. (4.9)

From equations (4.8), (4.9) and (4.6), we have

∥T (x)− T (y)∥ ≤ θ
[

q

√
1− q(µηq − γσq) + cq(ξ1 + ξ2)q

+ q

√
1− λqm1 + cqλqmq

2

]
∥x− y∥.

That is,
∥T (x)− T (y)∥ ≤ L∥x− y∥, (4.10)

where, L = θ
[

q
√
1− q(µηq − γσq) + cq(ξ1 + ξ2)q +

q
√
1− λqm1 + cqλqmq

2

]
.

Since 0 < L < 1 by condition (4.4), it follows from (4.10) that T is a
contraction mapping. Thus, the mapping T has a unique fixed point x ∈ E.
Hence x ∈ E is the unique solution of YIP (4.1).

Theorem 4.5. Let E be a q-uniformly smooth Banach space with norm ∥.∥.
Let A,B, f, g : E → E and H : E × E → E be the single-valued mappings
such that H is ξ1-Lipschitz continuous and ξ2-Lipschitz continuous with respect
to B. Let Mn,M : E × E → 2E be H(·, ·)-co-accretive mappings such that
MnG−→M . In addition the following condition is satisfied:

0 < θ[ξ1 + ξ2 + λm1] < 1. (4.11)

Then the approximate solution {xn} generated by Algorithm 4.3 converges
strongly to the unique solution x of YIP (4.1).
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Proof. It follows from Algorithm 4.3 and Lipschitz continuity of resolvent op-
erator that

∥xn+1 − x∥ = ∥RH(·,·)
λ,Mn(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)]

−R
H(·,·)
λ,M(·,·)[H(A(x), B(x))− λJ

H(·,·)
λ,M(·,·)(x)]∥

= ∥RH(·,·)
λ,Mn(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)]

−R
H(·,·)
λ,M(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)]

+R
H(·,·)
λ,M(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)]

−R
H(·,·)
λ,M(·,·)[H(A(x), B(x))− λJ

H(·,·)
λ,M(·,·)(x)]∥

≤ ∥RH(·,·)
λ,Mn(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)]

−R
H(·,·)
λ,M(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)]∥

+∥RH(·,·)
λ,M(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)]

−R
H(·,·)
λ,M(·,·)[H(A(x), B(x))− λJ

H(·,·)
λ,M(·,·)(x)]∥

≤ an + θ
∥∥∥H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)

− [H(A(x), B(x))− λJ
H(·,·)
λ,M(·,·)(x)]∥,

(4.12)

where,

an = ∥RH(·,·)
λ,Mn(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)]

−R
H(·,·)
λ,M(·,·)[H(A(xn), B(xn))− λJ

H(·,·)
λ,Mn(·,·)(xn)]∥.

(4.13)

It follows from the Lipschitz continuity of H and Lipschitz continuity of gen-
eralized Yosida approximation operator that

∥H(A(xn), B(xn))−H(A(x), B(x))− λ[J
H(·,·)
λ,Mn(·,·)(xn)− J

H(·,·)
λ,M(·,·)(x)]∥,

≤ ∥H(A(xn), B(xn))−H(A(xn), B(x))

+H(A(xn), B(x))−H(A(x), B(x))

− λ[J
H(·,·)
λ,Mn(·,·)(xn)− J

H(·,·)
λ,M(·,·)(x)]∥

≤ ∥H(A(xn), B(xn))−H(A(xn), B(x))∥
+ ∥H(A(xn), B(x))−H(A(x), B(x))∥

+ λ∥JH(·,·)
λ,Mn(·,·)(xn)− J

H(·,·)
λ,M(·,·)(xn)∥

+ λ∥JH(·,·)
λ,M(·,·)(xn)− J

H(·,·)
λ,M(·,·)(x)∥

≤ ξ2∥xn − x∥+ ξ1∥xn − x∥+ λbn + λm1∥xn − x∥,
(4.14)

where,
bn = ∥JH(·,·)

λ,Mn(·,·)(xn)− J
H(·,·)
λ,M(·,·)(x)∥. (4.15)

Then from (4.12) and (4.14), we obtain

∥xn+1 − x∥ ≤ an + θ[ξ1 + ξ2 + λm1]∥xn − x∥+ θλbn.
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Thus, we have
∥xn+1 − x∥ ≤ M∥xn − x∥+ an + θλbn, (4.16)

where
M = θ[ξ1 + ξ2 + λm1].

From (4.11), we have 0 < M < 1 and from (4.13) and (4.15), an, bn → 0 as
n → ∞. Hence (4.16) implies that

∥xn+1 − x∥ → 0 as n → ∞.

Thus, {xn} converges strongly to the unique solution x of YIP (4.1). This
completes the proof.
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